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Abstract

This paper develops the general framework for the calculation of thermal boundary resistance between a substrate
and a composite. All the previous works on the modeling of thermal boundary resistance have only dealt with pure
materials. Thermal boundary resistance is dependent on the phonon equilibrium intensity and the transmissivity of pho-
nons across the interface. These quantities depend on the group velocity, phase velocity and density of states of pho-
nons. Due to multiple and dependent scattering of phonons the group velocity, phase velocity and the density of states
are modified in a composite. Modification of these quantities is more dominant for nanocomposites at low tempera-
tures. Results for silicon/germanium nanocomposite show that thermal boundary resistance can be severely modified
depending on the temperature and size of the particulates. Results also show that when the particle size becomes large,
the thermal boundary resistance between the substrate and the composite is same as that between the substrate and the
host matrix of the composite.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Thermal boundary resistance (Rb) plays an important
role in determining heat flow, both in cryogenic and
room-temperature applications, such as very large scale
integrated circuitry, superlattices, and superconductors
[1,2]. Two of the most common models used to predict
[1,2] Rb are acoustic mismatch model (AMM) and dif-
fuse mismatch model (DMM). Review of all the relevant
literature [1] on Rb indicates that all the theoretical as
well as experimental work have been done for Rb be-
tween two pure materials [1–10]. The question which
has not been addressed is: what is the Rb between a sub-
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strate and a composite material? Is Rb same as that be-
tween the substrate and the host matrix of the composite
or does it get modified? This question becomes even
more important due to the advent of nanotechnology
as composites can be made by using nano to macropar-
ticles at will.

Materials using nano and microparticles mixed in a
host matrix are going to play very important roles in fu-
ture thermal technologies. Some potential applications
of nanoparticles for thermal technologies have already
been demonstrated [11–13]. Khitun et al. [12] and Liu
et al. [13] used spherical quantum dot structures to re-
duce the phonon thermal conductivity to increase the
efficiency of thermoelectrics. These composites can be
used as thermoelectric devices. Some other relevant po-
tential applications include nanoparticles mixed in a li-
quid to enhance the conductivity of liquids [11]. Other
class of nanocomposites is composites made from nano-
porous (NP) materials [14–16]. In these composites, the
ed.
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Nomenclature

a radius of the particles
AIn imaginary part of An

An coefficient in the scattered wave
ARn real part of An

Bn coefficient in the transmitted wave
Csca scattering cross-section
D(x) density of states
E emissive power of phonons
F scattering function
f(0) forward scattering amplitude
g ratio of density of the particle and the host

medium
h ratio of the wave speed in the particle and

the host medium
hn spherical Hankel function of first kind
I phonon intensity
jn spherical Bessel function
k wave vector
kI imaginary part of k
kR real part of k
N number of particles per unit volume (also

used as indices in various equations)
P stress field
Pn Legendre function

q heat flux
r radius vector
R1 R1 = 1/(gh2) � 1
R2 R2 = (g � 1)/(2g + 1)
Rb thermal boundary resistance
ur radial component of particle velocity
v velocity
vg group velocity
x size parameter (ka)

Greek symbols

a transmissivity of phonons
/ volume fraction of particles
u azimuthal angle
h polar angle
x frequency

Subscripts

C composite
i incident field
M host medium
P particle
s scattered field
t transmitted field
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pores are of nanometer size. NP materials are used in
variety of applications. They will play even bigger roles
in future technologies and applications. NP silicon is
used as insulating substrate for microsensor design
[16]. NP silicon is also being intensively investigated as
sensors due their luminescence properties [15]. In sensors
where it is necessary to get high thermal insulation in
order to obtain a large temperature variation in corre-
spondence to a small amount of heat, NP materials
can be used due to their small thermal conductivity
[15,16]. Other demonstrated/potential applications in-
clude their use as thermoelectrics [14], opal structures
[17,18], boiling surfaces in cryogenic applications [19],
low-k dielectrics in microelectronics. Other applications
of nano and microcomposites are their use as particle-
laden thermal interface materials at both room and
cryogenic temperatures [20–22]. Researchers have also
proposed the use of nanocomposites [23,24] and nano-
porous opal structures [25,26] to be used as super
conductors. Other relevant examples include the flow
of helium over sintered materials [27]. In all the applica-
tions mentioned above, the knowledge of Rb of the
nanocomposites is very important.

When these nanocomposites come in contact with a
substrate, the thermal boundary resistance between the
composites and the substrate will become important.
This situation is shown in Fig. 1 where a composite is
in intimate contact with a substrate. The composite
shown in Fig. 1 is made of germanium (Ge) particles
in silicon (Si) as the host medium. This composite will
be referred as Si/Ge composite in this paper and calcu-
lations have been performed for this composite. The
substrate is made of Ge. This situation can arise for
example if a nanocomposite based thermoelectric is
deposited on top of a microprocessor chip or a nanopor-
ous material is fabricated on top of a substrate. There-
fore, it is very important to develop a theoretical
framework for calculating Rb of composites. Note that
effect of Rb between the particle and the base matrix
has been thoroughly investigated in literature [20]. This
paper deals with Rb between a composite and the sub-
strate it is in contact with.

This paper develops the general framework for the
calculation of thermal boundary resistance between a
substrate and a composite made of spherical particles.
Thermal boundary resistance is dependent on the pho-
non equilibrium intensity and the transmissivity of pho-
nons across the interface. These quantities depend on
the group velocity (vg), phase velocity (v) and density
of states of phonons D(x). Due to multiple and depen-
dent scattering of phonons the group velocity, phase
velocity and the density of states get modified in a



Fig. 1. Schematic to demonstrate the interface between a
composite and a substrate. Composite considered in this paper
is made of Si host and Ge particles. The substrate is assumed to
be Ge.
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composite. Results show that modification of these
quantities is more dominant for nanocomposites at
low temperatures.
2. Scattering of phonons by particles

Phonons are elastic waves. Elastic waves undergo
mode conversion at the interface which leads to great
mathematical complications in solving the scattering
problem of elastic waves. The author has recently solved
the scattering problem for all three polarizations of pho-
nons [28–30] using the elastic wave equation. The focus of
these papers was on single scattering and only on the cal-
culation of single scattering cross-section, which is not at
all important for the calculation of Rb. In this paper, we
are dealing with effects of scattering of waves due to the
presence ofmultiple boundaries on the dispersion relation
of phonons. However in this paper acoustic wave equa-
tion without mode conversion is used primarily to reduce
the mathematical complexity and to focus on the physics
of the effects of multiple and dependent scattering on Rb.
The elastic wave equation is a vector wave equation
whereas the acoustic wave equation is a scalar wave equa-
tion. This also simplifies themathematics a lot. It is also to
be noted that all most all the work done on phonon scat-
tering in literature has used the acoustic wave equation
[12,13,31]. The acoustic wave equation is

r2P ¼ 1

v2
o
2P
ot2

ð1Þ

where P is the stress field and t is the time. Assuming
sinusoidal waveform P = pe�ixt where x is the fre-
quency of the acoustic wave, Eq. (1) reduces to

ðr2 þ k2Þp ¼ 0 ð2Þ

where k = x/v is the wave vector. Since the particles are
spherical in shape, Eq. (2) needs to be solved in spherical
polar coordinates. To solve the scattering problem in the
spherical polar coordinates the incident and transmitted
plane waves need to be expanded in spherical harmonics
[32]. In the spherical coordinates, the incident field (pi),
assuming unit amplitude is given as [32]

pi ¼
X1
n

inð2nþ 1ÞPnðcos hÞjnðkMrÞ ð3Þ

where i is the imaginary number, Pnðcos hÞ the Legendre
function, kM the wave vector in the host medium, r the
distance from the center of the scatterer as shown in
Fig. 2 and jn is the spherical Bessel function. Similarly,
the transmitted field (pt) is given as

pt ¼
X1
n

inBnð2nþ 1ÞPnðcos hÞjnðkPrÞ ð4Þ

where Bn is the undermined coefficient in the transmitted
field and kP is the wave vector in the particle. The scat-
tered field (ps) has to have a spherical waveform in the
far field [28,30] as shown in Fig. 2. Therefore ps is given
as

ps ¼
X1
n

inAnð2nþ 1ÞPnðcos hÞhnðkMrÞ ð5Þ

where An is the undermined coefficient in the scattered
field and hn is the spherical Hankel function of first kind.
In the far field (r! 1) it can be easily shown by using
the asymptotic form of hn that [33]

ps ¼ �
P1

n¼0iAnð2nþ 1ÞPnðcos hÞeikMr

kMr
ð6Þ

Eq. (6) shows that the scattered wave is a traveling
spherical wave. Two boundary conditions are satisfied
at the surface of the sphere (r = a): (a) the continuity
of stress, (b) the continuity of the radial component of
velocity, which is given by [32]
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Fig. 2. Scattering a plane traveling wave by spherical scatterer.
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ur ¼
�i

qv
op

oðkrÞ ð7Þ

where q is the density of the medium. Application of the
two boundary conditions give [32]

An ¼ � j0nðkPaÞjnðkMaÞ � ghjnðkPaÞj0nðkMaÞ
j0nðkPaÞhnðkMaÞ � ghjnðkPaÞh0nðkMaÞ

ð8Þ

and

Bn ¼ �
gh h0mðkMaÞjnðkMaÞ � hnðkMaÞj0nðkMaÞ
� �
j0nðkPaÞhnðkMaÞ � ghjnðkPaÞh0nðkMaÞ

ð9Þ

where a is the radius of the particles and g = qP/qM and
h = vP/vM. The primes in Eqs. (8) and (9) represent dif-
ferentiation with respect to the variables in the bracket.
In the Rayleigh regime (kMa� 1 and kPa � 1) it can
shown that only first two terms in An are important
and are given as [34]

A0 ¼ i
R1

3
x3; A1 ¼ i

R2

3
x3 ð10Þ

where x = kMa is the size parameter, R1 = 1/(gh2) � 1
and R2 = (g � 1)/(2g + 1). For acoustic wave, it can be
shown that the scattering function is [34]

F ðh;/Þ ¼
X1
m¼0

X1
n¼0

AmAnð2mþ 1Þ

� ð2nþ 1Þpnðcos hÞpmðcos hÞ ð11Þ

where An is the complex conjugate of An. The scattering
cross-section (Csca) of single a scatterer is given as [35]
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Csca ¼
Z p

0

Z 2p

0

F ðh;/Þ
k2M

sin hdhd/

¼ 4p

k2M

X1
n¼0

ð2nþ 1ÞAnAn ð12Þ
3. Modification of velocity of phonons due to multiple

scattering: effective field approximation (EFA)

In this section effective wave properties of a compos-
ite are computed. In the presence of particles the effec-
tive wave vector (kC) in the particulate media
(composite) due to multiple scattering of the wave is
given as [36]

k2C ¼ k2M þ 4pNf ð0Þ ð13Þ

where N is the number of scatterer or particles per unit
volume and f(0) is the forward scattering amplitude.
Realizing that Pnðcos 0Þ ¼ 1, f(0) from Eq. (6) is

f ð0Þ ¼ � i

kM

X1
n¼0

Anð2nþ 1Þ ð14Þ

Separating An into real and imaginary part as An =
ARn + iAIn and substituting Eq. (14) into Eq. (13) leads
to

k2C ¼ k2M þ 4pn
kM

X1
n¼0

AInð2nþ 1Þ � i4pn
kM

X1
n¼0

ARnð2nþ 1Þ

ð15Þ

kC can be separated into real and imaginary part as
kC = kR + ikI. kR gives the effective phase velocity of
the medium and kI is related to the effective attenuation
(b) of the wave in the medium as b = 2kI. kI is needed in
the calculation of the thermal conductivity of the com-
posite if the particles serve as the scatterer of phonons
[34]. kI is not important in the calculation of Rb. An-
other interpretation of Eq. (15) is that kR represents
the coherent part of the wave and kI represents the inco-
herent part of the wave. The scattering cross-section is
also given as [37]

Csca ¼ � 4p
kM

X1
n¼0

ARnð2nþ 1Þ ð16Þ

Therefore Eq. (15) can be written as

k2C
k2M

¼ 1þ 4pN

k3M

X1
n¼0

AInð2nþ 1Þ þ iNCsca

kM
ð17Þ

It can be shown that Eq. (17) gives the independent scat-
tering results in the dilute scatterer limit by making a
binomial expansion of Eq. (17)

kC
kM

¼ 1þ 2pN
kM

X1
n¼0

AInð2nþ 1Þ þ iNCsca

2kM
ð18Þ
Eq. (18) shows that b = 2kI = NCsca, giving the indepen-
dent scattering result.

Eq. (17) can be written in terms of the volume frac-
tion of the particles (/) by substituting N = 3//(4pa3)
as

k2

k2M
¼ 1þ 3/

x3
X1
n¼0

AInð2nþ 1Þ þ iNCsca

kM
ð19Þ

Eq. (19) can written as

kR þ ikI
k1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ iS

p
ð20Þ

where

Q ¼ 1þ 3/
x3

X1
n¼0

AInð2nþ 1Þ ð21Þ

S ¼ n
k1

Csca ð22Þ

It can be easily shown [37] that

kR ¼ kM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2ðLþ SÞ

p
ð23Þ

kI ¼ kM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2ðL� SÞ

p
ð24Þ

where

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ Q2

q
ð25Þ

Therefore

kI
kR

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
L� S
Lþ S

r
ð26Þ

Using Eq. (26) it can be shown that kI � kR. This was
shown by the author for the case of photons [38]. There-
fore k2I can be neglected compared to other terms in
Eq. (19). Eq. (19) can be written as

k2R þ 2ikRkI
k21

¼ 1þ 3/
x3

X1
n¼0

AInð2nþ 1Þ þ iNCsca

kM
ð27Þ

The velocity of phonon in the composite (vC) can be
written as vC = kR/x. Therefore from Eq. (27) the effec-
tive phonon phase velocity in the composite can be writ-
ten as

vC ¼ vM

1þ 3/
x3
P1

n¼0ð2nþ 1ÞAI

� �0.5 ð28Þ

vg is related to vC by

vg ¼
vC

1� x
vC

dvC
dx

ð29Þ

Fig. 3 shows the variation of vC for a composite made of
germanium particle in silicon (called Si/Ge composite in
the paper) for / = 0.2. In this paper velocity of all the
three polarizations are assumed to be same and equal to
theDebye speed. The physical properties if Si andGeused
for calculations are given in Table 1. Fig. 3 shows that in
the geometric scattering (large values of x) regime
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Fig. 3. vC/vM for different values of size parameter x.

Table 1
Physical properties of silicon and germanium used in calcula-
tions [24]

Material Density
(kg m�3)

Debye
temperature (K)

Debye speed
(m s�1)

Silicon (Si) 2330 645 5880
Germanium (Ge) 5320 374 3550
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vC = vM, i.e. the effective velocity of phonons is same as
the velocity of the host matrix. However at substantially
large volume fractions vC of macrocomposites can be dif-
ferent than vM and more sophisticated approximations
such as the coherent potential approximation [39] should
be used to calculate vC.

It is worth mentioning that researchers [40,41]
have considered the modification of the dispersion rela-
tion of phonons due to geometry confinement in simple
one dimensional nanowires. These studies have shown
that vg of nanowires can be significantly different from
the vg of the bulk material. The theoretical develop-
ment on the modification of dispersion relation in com-
posites as considered in this paper is inherently more
complex than nanowires because of the presence of
multiple boundaries due to multiple number of parti-
cles.

If the size of the particles is much smaller than the
wavelength of the phonons either in the particle or in
the medium then some of relations derived earlier can
be simplified considerably. This regime is the Rayleigh
scattering regime. In the Rayleigh scattering regime by
using Eq. (10) vC can be written as

vC ¼ vM
1þ /½R1 þ 3R2�ð Þ0.5

ð30Þ
In the Rayleigh regime vC is independent of frequency
and the group velocity is same as the phase velocity of
the phonons. Rayleigh regime basically means that the
whole composite can be treated as a homogeneous mate-
rial since the wavelength is much larger than the particle
size. It is because of this reason, it can be seen from Eq.
(30) that vC is independent of the frequency. vC is only a
function of the volume fraction, density of the particle
and the medium and the velocity of the phonons in the
particle and the medium. The velocity of the phonons
in any material is dependent on the modulus and the
density of the medium. Therefore one can potentially de-
fine an effective modulus of the composite by using Eq.
(30) as the density of the composite is given by,
qC = (1 � /)qM + /qP.

One might be tempted to calculate the effective veloc-
ity of phonons in the composite by using some sort of
rule of mixtures by using the velocity of phonons in
the medium and the particle, however mixing formula
cannot capture the physics of the problem. Fig. 3 shows
that vC is dependent on frequency and is same as vM at
higher frequency or smaller wavelength. Mixing formula
cannot capture this frequency dependence. Eq. (8) shows
that An depends not only vP and vM but also on qP and
qM. Dependence on qP and qM has to be taken into ac-
count. In the Rayleigh regime where vC is independent of
frequency, vC still depends on vP and vM and qP and qM.
Therefore Eq. (30) can be considered as the simplest
mixing formula to compute the velocity of phonons in
the composite.
4. Modification of velocity of phonons due multiple and

dependent scattering: quasi-crystalline approximation

(QCA)

There are two pertinent length scales involved in the
scattering of plane waves as shown in Fig. 1. First length
scale is the size parameter x and second length scale is
d/k where d is the inter particle distance and k is the
wavelength of phonons. The value of d/k decides if the
scattering is dependent or independent. In the dependent
scattering regime a pair distribution function is used.
Among various pair distribution functions Percus–
Yevick (PY) [42] integral equation with appropriate par-
ticle-to-particle interactions is the best and can be used
for larger volume fractions. Other pair distribution func-
tions fail at volume fractions higher than 0.1. For a
packed-sphere system the hard sphere potential applies
[42]. Unfortunately for PY model analytical results can
only be obtained for very small values of x i.e. in the
Rayleigh regime. Drolen and Tien [42] have proposed
that for d/k > 0.5 dependent scattering effects are negli-
gible. Since d increases with increasing particle size
therefore if the particle size is large then independent
scattering will persist for larger volume fractions.
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Lax [36] showed that Eq. (14) is valid only for small
volume fractions i.e. Eq. (14) is not valid in the depen-
dent scattering regime. Lax introduced a model called
quasi-crystalline approximation (QCA) which deals with
multiple and dependent scattering. Tsang et al. [43] have
derived equations for QCA for both electromagnetic
and acoustic waves using Percus–Yevick pair distribu-
tion function. Under QCA Eq. (14) modifies to

f ð0Þ ¼ � i

kM

X1
n¼0

T nAnð2nþ 1Þ ð31Þ

where Tn is in Eq. (31) is due to the dependent scatter-
ing term and is dependent on the PY pair distribution
function. This equation is substituted in Eq. (13) to de-
rive vC. vC for QCA can be derived using the same
methodology as EFA. However solution of QCA is
very complicated compared to EFA for general values
of x. For Rayleigh scattering analytical results were
obtained by Tsang et al. [21]. In the Rayleigh regime
vC is given as

vC ¼ vMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þR1/Þð1þR2/Þ

1�2R2/

q ð32Þ

Fig. 4 shows the comparison between vC calculated from
EFA and QCA in the Rayleigh regime. Fig. 4 shows that
dependent scattering does not affect vC too much as both
QCA and EFA are very close to each other. However
dependent scattering affects the attenuation quite se-
verely as shown by the author for both photons and
phonons [14,18].
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Fig. 4. vC/vM in the Rayleigh regime for Ge (particles)/Si (host
medium) nanocomposite.
5. Calculation of Rb

Basic formulations for the calculation of Rb are given
in this section. The formulations for Rb are given in
terms of phonon equilibrium intensity I0 to make it con-
sistent with the equation of phonon transport [44] and
draw close analogy with radiation heat transport. I0 is
given by [45]

I0j ðxÞ ¼
1

4p
vg;j

1

exp �hx
kbT

� �
� 1

�hxDjðxÞ ð33Þ

where j denotes the polarization of phonon, �h = Planck
constant/2p and kb the Boltzmann constant, T is the
temperature. I0j ðxÞ is the spectral intensity within a unit
small frequency interval centered around a single fre-
quency x. Analogous to black body radiation the emis-
sive power of phonons which is the energy emitted per
unit time within a unit small frequency interval centered
around the frequency x, per unit elemental surface area
and into a unit elemental solid angle centered around the
direction (h,u) can be defined as

E0
j ðx; h;uÞ ¼ I0j ðxÞ cos h ð34Þ

Total phonon emissive power can be written as

Ej ¼
Z xD

0

Z p=2

0

Z 2p

0

E0
j ðx; h;uÞ sin hdxdhdu ð35Þ

where xD is the Debye temperature. If two surfaces are
in contact then the heat flux (q) from side 1 to 2 can be
written as

q1–2 ¼
Z xD<

0

Z p=2

0

Z 2p

0

E0
j ðx; h;uÞa1–2ðj; h;xÞ

� sin hdxdhdu

¼
Z xD<

0

Z p=2

0

Z 2p

0

I0j ðxÞa1�2ðj; h;xÞ

� cos h sin hdxdhdu ð36Þ

where a1–2 is the transmissivity of phonons from side 1
to 2 and xD< is the smaller of the Debye frequency of
the two sides. It can be easily shown that Eq. (36) is
same as the familiar expression for q given in the litera-
ture [1]. D(x) is given as

DðxÞ ¼ k2

2p2

dk
dx

¼ x2

2p2v2vg
ð37Þ

D(x) for the composite can be calculated using Eqs. (28)
and (29). Due to multiple scattering of the phonons the
Debye frequency and the Debye temperature (hD) are
also modified as they are dependent on v. For the com-
posite xD and hD are given as [46]

xD ¼ 6p2 N
V

� 	
vC ð38Þ
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and

hD ¼ �h
kb

6p2 N
V

� 	
vC ð39Þ

where N is the number of primitive cells and V is the vol-
ume. Since vC is frequency dependent except in the Ray-
leigh regime, therefore xD and hD are also frequency
dependent. From Eq. (36) q due to all polarizations of
phonons from side 1 to 2 is

q1�2 ¼
X
j

1

4p2

Z xD<

0

Z p=2

0

1

v21;j

� �hx3

exp �hx
kbT

� 1
� � a1�2ðj; h;xÞ

� sin h cos hdxdh ð40Þ

Similarly q can be written for heat flux from side 2 to 1.
Since the vC = vM as shown in Fig. 3 for large values of x
i.e. for macrocomposites where the wavelength is much
smaller than the size of particles q, xD and hD are same
as the host medium of the composite. For AMM [2]

a1�2ðjÞ ¼
4

q1v1;j
q2v2;j

cosðh1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2;j

v1;j
sinðh1Þ

h i2r

cosðh1Þ þ q1v1;j
q2v2;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2;j

v1;j
sinðh1Þ

h i2r" #2
ð41Þ

where h1 is the angle of incidence of the phonons from
side 1 to 2. Note that Eq. (41) is only valid of there is
no mode conversion. Since in this paper phonons are
treated as acoustic waves rather than elastic waves as
mentioned earlier Eq. (41) can be used for all three
polarization of the phonons. For DMM a is indepen-
dent of angle of incidence and phonon polarization. a
for DMM is given as

a1�2 ¼
P

jv
�2
j;2P

jv
�2
j;2 þ

P
jv

�2
j;1

ð42Þ

If a and v are independent of x then

q1�2 ¼
1

4p2

X
j

C1�2;j

v21;j

ðkbT 1Þ4

�h3

�
Z ð�hxD<Þ=ðkbT 1Þ

0

u3

expðuÞ � 1
du ð43Þ

where

C1�2;j ¼
Z p=2

0

a1�2;jðj; hÞ cos h sin hdh ð44Þ

At T � Debye temperature [1]

q1�2 ¼
p2

60

X
j

C1�2;j

v21;j

ðkbT 1Þ4

�h3
ð45Þ
Therefore if a is independent of x and the velocity of all
polarizations are same as assumed in this paper then at
low temperatures it can be easily shown that for AMM

Rb ¼
p2

5

C1�2

v21

k4b
�h3

� 	�1

T�3 ð46Þ

and for DMM

Rb ¼
p2

10

1

v21 þ v22

k4b
�h3

� 	�1

T�3 ð47Þ

Assuming that 1 represents the composite and 2 repre-
sents the substrate, the ratio of thermal boundary resis-
tance of the composite (RbC ) and the thermal boundary
resistance of the medium (RbM)

RbC

RbM

¼ v2C
v2M

� 	
CM�2

CC�2

ð48Þ

for AMM and

RbC

RbM

¼ v2C þ v22
v2M þ v22

� 	
ð49Þ

for DMM. For Rayleigh scattering vC is independent of
frequency as shown by Eq. (30) and Rayleigh scattering
results are valid at low temperatures. Therefore for Ray-
leigh scattering Eqs. (47) and (48) can be used to calcu-
late Rb by using Eq. (30). Rayleigh regime is possible for
nanocomposites at low temperatures due to small size of
the particles and large wavelength of the phonons. Fig. 5
shows the ratio of integrated transmissivity (C) for the
composite and pure Si for AMM for different volume
fractions of Ge particles in the composite in the Ray-
leigh regime. Fig. 5 shows that C is not very different
from that of pure Si. Ratio of Rb for Si/Ge nanocom-
posite and the Rb for pure Si are shown in Fig. 6 in
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the Rayleigh regime. Fig. 6 shows that Rb of Si/Ge
nanocomposite is very different than the Rb of pure Si.
Fig. 6 also shows that effect of dependent scattering
(QCA) is not very dominant and Rb mainly gets modi-
fied due to the multiple scattering of phonons as Rb

for both QCA and EFA are very close to each other
for both AMM and DMM.
6. Discussion

The calculations were performed for Ge nanoparti-
cles in Si, however the formulations can be used for
other types of composites. As mentioned in Section 1,
nanoporous composites hold a lot of promise for future
applications. The velocity of the phonons in the Ray-
leigh regime can be significantly smaller for nanoporous
materials. For example if nanoporous silicon is filled
with Helium gas at cryogenic temperatures then assum-
ing / = 0.4, we get, vc = 0.016vM in the Rayleigh regime.
Similarly using DMM (Eq. (48)) RbC ¼ 0.267RbM in the
Rayleigh regime. These calculations show that Rb of
nanoporous material filled with a gas will be signifi-
cantly different than that of the medium. The calcula-
tions for both Si/Ge nanocomposite and nanoporous
Si indicates the vC < vM and hence RbC < RbM , however
this trend is not universally true. This happened because
the velocity of phonons in the Ge or He is smaller than
the velocity of sound in Si. For example if we consider a
composite made of Si nanoparticles in Ge matrix then
using Eqs. (30) and (48) it can be easily shown that
vC > vM and RbC > RbM .
Another class of problems which can be potentially
handled by the work developed in this paper is on the
effects of grain boundaries on Rb, however this will
not be very straightforward. Goodson [3,4] considered
the impact of grain boundaries in diamond on thermal
conduction normal to diamond-silicon boundaries. If
an assessment of the impacts of grain boundaries on
Rb has to be made then one needs to know the velocity
of phonons in the grains as well as the density of the
grains, which probably is not possible. Approximate
upper bound analyses are normally made in assessing
the impact of grain boundaries on thermal conductivity
[4]. Similar approach can be taken to understand the im-
pact of grain boundaries on Rb. One can make an upper
bound estimate by assuming that the grain boundaries
are rigid. Rigid boundaries mean that h and g in
Eq. (8) becomes infinite. This makes R1 = �1 and
R2 = 0.5. Therefore in the Rayleigh regime under the
rigid boundary approximation vC = vM/(1 + 0.5/)0.5.
7. Conclusions

Modeling of thermal boundary resistance of compos-
ites was presented in this paper. The main conclusions
are:

(1) Due to multiple and dependent scattering of pho-
nons Rb of composites get modified.

(2) Modification of Rb is more dominant for nano-
composites at low temperatures.

(3) Rb for macrocomposites are same as that of the
host matrix for nominal volume fractions.

(4) Effects of multiple scattering are more dominant
than dependent scattering on Rb.
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